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Executive Summary 

Monitoring non-motorized traffic is gaining increased attention in the context of 

transportation studies. Most of the traditional pedestrian monitoring technologies focus 

on counting pedestrians passing through a fixed location in the network. It is thus not 

possible to determine the movement of individuals or groups as they move outside of 

each particular sensor’s range. Moreover, most transportation agencies do not have 

continuous pedestrian counts mainly because of technological limitations. However, 

wireless data collection technologies can capture crowd dynamics by scanning mobile 

devices. Data collection methods that take advantage of mobile devices have gained 

much interest in the transportation literature due to its low cost, ease of implementation 

and richness of captured data (Carpenter, Fowler, & Adler). 

The main objective of this project is to develop and conduct limited testing of 

novel sensors using Bluetooth technology (BT) to estimate OD demands and station wait-

times for users of public transit stations. The NYU research team tested the feasibility of 

the utilization of sensors with Bluetooth technology to estimate Origin-Destination (OD) 

demands and station wait-times of users of transit systems with a focus on subway 

systems. For example, if the entrance and exit turnstiles at subway stations were equipped 

with this type of sensors, it is possible to capture OD information for some of the riders 

with activated devices.  

Estimation of daily and hourly OD demands and delays is important for transit 

agencies because it can help improve their operations and make time decisions to reduce 

delays and mitigate cost, among other benefits. The proposed method of tracking 

Bluetooth IDs uses inexpensive, small, and easy to deploy wireless detectors / readers 

with specialized software developed by the research team. This is a low-cost and viable 

alternative to traditionally used surveys or other advanced technologies. 

Following a literature review and device testing, a series of one-day pilot tests are 

conducted in several locations with different pedestrian traffic characteristics to identify 

and address all of the possible hardware and software issues. A full one day to one week 

indoor tests are conducted with continuous data collection and monitoring to assess the 

feasibility and usefulness of long-term data collection using the proposed sensing 

technology. Two software tools to post process the collected data and to perform self-
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diagnosis and remote data acquisition functions are developed as part of the overall 

research project.  

Finally, A Markov Chain Model (MCM) is developed to model the general 

attributes of a pedestrian network such as density, dwell times, and OD flows. Markov 

Chains provide a mathematical structure appropriate to modeling discrete events, which 

we find to be suitable for understanding pedestrian behavior in our case study. 

This project demonstrated the feasibility of building low-cost ubiquitous sensors 

that can be used to collect pedestrian data to estimate OD flows and waiting times of 

pedestrians.  However, due to the complexity of pedestrian traffic, more work is needed 

to improve data quality of these sensors by developing advanced filtering methods that 

can be deployed in the field.  The MCM model is tested for a toy network with limited 

data. It can also be improved to be used under real-world conditions for large size indoor 

and outdoor transportation networks with heavy pedestrian traffic. 
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1 INTRODUCTION 

Estimation of daily and hourly Origin-Destination (OD) demands and wait-times at 

transit stations are important for transit agencies because it can help improve their 

operations and make timely decisions to reduce delays and cost, among other benefits. In 

the past, transit agencies such as New York City’s MTA and NJ Transit have been mainly 

using surveys to estimate OD demands and wait-times. However, surveys are generally 

very expensive and time consuming for large systems, such as the NYC subway, and 

consequently limited in size and information they provide. Moreover, they do not provide 

information that can accurately capture time and frequency of OD demands between 

stations. The estimation of wait-times for transit riders using surveys or travel diaries is 

also problematic due to the difficulties of sample accuracy, bias, to name a few.  It is well 

known that survey respondents can have difficulties in accurately remembering and 

recording their wait-times.  Some other technology oriented methods for pedestrian 

mobility monitoring also include fixed pedestrian counters and vision based technologies 

but these cannot capture OD demands. There are also new ticketing technologies that can 

capture OD information but their current level of implementation in the NY-NJ-CT tri-

State area, coupled with privacy issues, make acquiring this data several years away. In 

addition, the wait-time information cannot be not easily captured by any of the ticketing 

technologies and additional sensors will be needed. In the recent years, there have been 

several studies in the literature to automate pedestrian detection or counting to explore 

economical and reliable methods (Ozbay, Bartin, Yang, Walla, & Williams, 2010; 

Ozbay, Yang, & Bartin, 2010).  

1.1 Research Objective 

The main objective of this project is to develop and conduct limited testing of novel 

sensors using Bluetooth technology (BT) to estimate OD demands and station wait-times 

for users of public transit stations. If the entrance and exit turnstiles at subway stations 

are equipped with this type of sensors, it is possible to capture OD information for some 

percentage of the riders with visible Bluetooth devices. This information can be used 

anonymously to detect origin and destination of riders by matching data collected at 

entrances and exits from the system. Assuming that visible Bluetooth enabled devices are 
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uniformly distributed among the riders, it is possible to estimate a transit OD matrix for 

the entire system in terms of demand percentages. Moreover, other publicly available 

transaction data can be used in conjunction with the OD demand percentages generated 

from the wireless sensor observations to estimate number of actual OD trips.  It is clearly 

valuable for any transit agency to estimate heavily used OD pairs for scheduling and 

operations, as well as agency costs.  The wait time estimation utilizes the same sensors 

that will be deployed at specific locations by recording the time each individual BT 

enabled device remains at a given location before departing to their final destination.  

This information can help transit agencies to optimize their train and bus schedules in 

order to minimize wait times.  More importantly, the optimization of schedules can be 

done in real or almost real-time due to the real-time availability of wait times from the 

sensors.  
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1.2 Research Approach 

The research team has developed a Java based application that can be run on any Android 

device to detect and record the active Bluetooth devices within a certain perimeter. The 

developed app running on a tablet records, timestamp and location of detection of active 

mobile devices. This tablet running the developed app can be placed in an encasement 

that can be secured at a certain location in a pedestrian facility or transit station. 

Additional batteries can be added to prolong battery life for a single usage. Then, this 

encasement can be placed near the entrance and the exit points to determine OD flows.  

The device can store the OD and wait information and upload it to a central server such 

so that the information can be accessed remotely. 

Table 1: Information Structure Collected by the Bluetooth Reader 

Type Mac RSSI Timestamp Brand 

WiFi ... -42 2016-05-16 16:25:22 Apple 

WiFi ... -61 2016-05-02 16:18:51 Samsung 

Bluetooth ... 0 2016-05-02 16:19:25 Apple 

WiFi ... -64 2016-05-02 16:20:06 HTC 

WiFi ... -75 2016-05-02 16:20:44 Apple 

 

  Table 1 illustrates the structure of the information that is collected by the 

Bluetooth reader and stored in the database. By matching the IDs which are anonymized 

encrypted at the time of detection and unidentifiable to individual devices or persons, the 

entrance and exit stations of a rider can be known. The timestamp can also be used to 

identify the travel-time, including wait-time, of the rider. The aggregated OD flow values 

and time-dependent average wait times will be the only stored information when these 

types of sensors are actually deployed. Thus, no individual data point will need to be 

stored in the case of actual deployment.  
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2 LITERATURE REVIEW & BACKGROUND 

2.1 Wireless Technology and Its Use in Transportation Studies 

The emergence of the new Information and Communication Technologies (ICT), 

makes it possible to gather new types of traffic data with higher quality and accuracy. 

Bluetooth is a wireless technology for short-range communications from fixed or mobile 

devices. The technology was first designed to replace data cables while maintaining the 

high levels of security. The key features of Bluetooth technology are robustness, low 

power, and low cost (Jie, Na-na, Ji-lin, Yong-feng, & Zheng, 2008). Bluetooth 

specification defines a uniform structure for a wide range of devices such as cell phones, 

GPS devices, mp3 players, and hands free devices to connect and communicate with each 

other. Since every Bluetooth device has a unique MAC address, if this information is 

captured at a single or multiple locations, it is possible to use it in transportation studies. 

Although not all Bluetooth devices are discoverable, but in general it has been reported 

that 5%-12% of devices are discoverable via Bluetooth (Brennan Jr et al., 2010). This 

sample size is adequate for most transportation studies. 

The use of anonymous Bluetooth data is gaining popularity for data collection for 

pedestrian detection. The general idea is to track anonymous Bluetooth IDs using 

inexpensive, small and easy to deploy Bluetooth detectors that consist of low cost smart 

phones and/or tablets that are loaded with specialized software developed by the research 

team.  This type of technology is now widely used by highway agencies and the most 

important technical and privacy issues have already been resolved (Puckett & Vickich, 

2010). The work presented by Ahmed et. al. (2008) is among the first to utilize Bluetooth 

detection for vehicle monitoring. The contribution of this work is the deployment of a 

very low cost and low power device/software combination for transit related OD 

estimation applications for the first time. 

Kostakos (2008) used Bluetooth devices to trace passenger journeys on public buses 

and derive passenger OD matrices. Bullock et al. (2010) deployed a Bluetooth tracking 

system at the new Indianapolis International Airport to measure the time for passengers 

to transit from the non-sterile side of the airport (pre-security), clear the security 
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screening checkpoint, and enter the walkway to the sterile side. Hamedi et al. (2009) 

investigated the quality of vehicle probe data using new traffic surveillance devices based 

on Bluetooth technology. Their results showed that the technology is a promising method 

for collecting high quality travel time data that can be used for evaluating other sources 

of travel time and intelligent transportation systems (ITS) applications. Haseman et al. 

(2009) also used Bluetooth probe data from multiple field collection sites to quantify 

delay and to assess diversion rates at a rural Interstate Highway work zone along I-65 in 

Northwestern Indiana. 

Malinovskiy et. al. (2012) presented a study of pedestrian detection using Bluetooth 

at two separate sites, Montreal and Seattle. They investigated the feasibility of using 

Bluetooth for pedestrian studies and found out that it can provide useful information for 

pedestrian travel behavior. Barceló et. al. (2012) presented Ad Hoc procedures based on 

Kalman Filtering. Their approach used the explicit travel time measurements from 

Bluetooth detectors for estimating time dependent OD matrices. Results showed that the 

proposed approach to dynamic OD matrix estimation provides good estimates of target 

values. Although the time of detection is known precisely, it is really challenging to find 

the location of the device. Tuning the antenna features and power levels can reduce the 

detection radius. However, this may lead to another potential problem of not being able to 

detect devices that are not within the detection range due to random delays in the process 

of detection which can go up to 10 seconds. Most of these problems were addressed in 

Lees-Miller et.al.’s (2013) study. They tried to recover the path of a vehicle using only 

Bluetooth detection data and used Hidden Markov Models. The proposed approach was 

able to reconstruct vehicle trajectories outperforming a simple deterministic strategy by 

30-50%. 

Michau et. al. (2014) pointed out that the position of the detectors is of great 

importance and that the Bluetooth signals are easily weakened by physical conditions as 

well as weather. The detection process of a Bluetooth device can be described as a cycle 

during which the sniffer will transmit messages on different range of frequencies and 

waiting for devices to pick up that message. This requires some time to be completed. 

Therefore, Bluetooth devices have to be in discoverable mode approximately 10 seconds 
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within the detection zone in order to detect them (Michau et al., 2014). The filtering 

methodology of Bluetooth data plays a key role in estimating any kind of traffic state 

estimation or prediction in terms of research. Laharotte et. al. (2015) provided some 

insights on how BT data can be used for flow prediction. Their filtering algorithm 

reconstructs traffic states at a network scale using non-parametric pattern recognition 

techniques with a k-nearest-neighbors (kNN) procedure. Their prediction of the network 

traffic state with a kNN approach showed convincing results using 31 days of data. 

Integration of Wi-Fi systems to Bluetooth sensors can be seen in the recent studies 

of real-time data collection and monitoring of pedestrian networks. However, Wi-Fi 

monitoring requires that devices are connected to a certain wireless network and that the 

network covers the entire study area. Lesani et. al. (2016) investigated the advantages and 

the feasibility of a Wi-Fi data collection system as an alternative and a supplement to BT 

technology. They found that the detection rate for BT is as low as 2.0% and the 

combination of Wi-Fi and BT systems showed promising results. Hourly travel time 

estimations errors were around 3.8%. The average and median prediction errors of 

pedestrian flows were 15% and 9% respectively.  Weppner, Lukowicz, Blanke, and 

Troster (2014) used Bluetooth scanners to count the number of devices in a fixed region. 

Nicolai and Kenn (2007) presented a method to find out the relationship between 

detected Bluetooth devices and the ground truth data. Kalogianni et al. (2015) used 

passive Wi-Fi scanning method to sense the movements of students, employees and 

visitors in a university campus. They investigated what kind of patterns can be captured 

by WiFi monitoring and how people utilize the buildings at the campus. The results 

pointed out that passive Wi-Fi monitoring is an effective way to identify building usage 

and movement between buildings. Bonne, Barzan, Quax, and Lamotte (2013) developed 

a low-cost crowd counting system based on a single-board computer with the addition of 

a LED to provide a status indicator and an Android cell phone as an operator. 15 devices 

were deployed in a music festival and 4 in a university campus. They concluded that 

tracking visitors at mass events can be achieved by using Raspberry PI sensors at a very 

low cost. N Abedi, Bhaskar, and Chung (2013) used a commercial sensor with the 

capability of scanning both Bluetooth and Wi-Fi addresses simultaneously.  They 

compared the standards for both technologies regarding architecture, discovery time, 
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signal strength and popularity of use. The results pointed out that Wi-Fi has shorter 

discovery time, the distance from the sensor can be estimated based on the signal 

strength, and Wi-Fi is accepted as the more appropriate standard compared to Bluetooth 

for pedestrian data collection. Naeim Abedi, Bhaskar, Chung, and Miska (2015) 

evaluated antenna characteristics and concluded that the bigger antenna gains capture 

more data, but they may not be useful for small scales of monitoring due to overlapping 

detection areas.Schauer, Werner, and Marcus (2014) used both Wi-Fi and Bluetooth 

sensors to estimate crowd densities and pedestrian flow at a major German airport. 

Additional studies are dealing with pattern mining in tourist attraction visits (Versichele 

et al., 2014), Bayesian approach to detect destinations (Danalet, Farooq, & Bierlaire, 

2014), and location popularity and visit patterns (Vu, Nguyen, Nahrstedt, & 

Richerzhagen, 2015) can be found in the literature. 

Most of the mentioned studies allude to the fact that Bluetooth detection 

technologies are revolutionary compared with traditional sensing and surveying methods 

as it pertains to the quality and richness of the data and relatively low cost and simplicity 

of the technology. Filtering, sensor placement, and sensor features are inevitably common 

themes in most of these studies and highly depend on the system at hand.  

2.2 Privacy Issues 

Privacy is an important issue that needs to be addressed in any data collection studies 

involving the public. The electronic identifier for Bluetooth devices (MAC ID) contains 

two parts: the first part is assigned by the manufacturer of the device, and the second part 

is assigned to the specific device. Data collection systems should not store personally 

identifiable data; therefore, the MAC addresses collected by the Bluetooth reader should 

not be associated with specific users. In a research study by Texas Transportation 

Institute (2010), a routine is added to Bluetooth data collection software to encrypt the 

MAC addresses collected. This is done to make sure that actual device addresses are not 

stored anywhere, but rather a random set of characters is used. For example, a device 

with the MAC address 00:24:9F:E1:FE:98 might be encrypted to 

MDA6MjM6RDc6REQ6MzI6QkM by their software (Puckett & Vickich, 2010). In this 

study, a similar encryption approach is proposed to ensure maximum privacy while 
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maintaining persistent records, which is explained in detail in the next section. The 

information that will be collected will be encrypted at the moment of data collection so 

that no one will have access to any personal information other than the authorized person 

who holds the secure encryption key. 

 The other studies in the literature utilized similar encryption approaches to 

achieve anonymous detection. The detected electronic identifier of the BT device is 

converted into an encrypted hash code and this hash code is stored on the device in some 

studies. The unique identifiers that are not matched by two sensors were deleted at the 

site in studies exploring pedestrian movements. (Malinovskiy et al., 2012; Michau et al., 

2014) . In others, it has been stated that either privacy concerns for the end users are a 

non-issue when the data collected through Bluetooth or the data was kept anonymous 

without being directly tied to individuals (Barceló et al., 2012; Carpenter et al., 2012; 

Laharotte et al., 2015).  

For the use cases identified in this study namely, estimation of OD flows and wait 

times, there is no need to store any individual data even if they are anonymized and 

encrypted.  The OD flow and with time data will be in the form of aggregated total 

number of detections and average wait times for a given time period by obviating the 

need for storing any individual data points.   

2.3 Commercial Solutions Using Bluetooth 

There are some commercial solutions available for pedestrian tracking. Sensys Networks 

presents a traffic data collected via wireless sensors and analytical platform for managing 

corridors and intersections (SENSYS). They provide real-time bicycle counts, travel 

times, intersection delay, OD, volume, occupancy and traffic speed data through their 

sensors. Another company that provides traffic data using BT sensors is Clearview 

Intelligence (Clearview). Their sensor is designed to integrate with physical 

infrastructure. It can provide temporary or permanent installations for monitoring the 

flow of traffic. Although Tyco’s BT unit is similar, it is designed to be mounted on a pole 

(Tyco). It identifies and time stamps detected agents for transmission to a server via 

mobile wireless or wired networks. Trafficast is another wireless device computing travel 
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times and vehicle behaviors using BT signals emanating from passing vehicles. The 

detection radius for most of these sensors stated as 50 meters. BlipTrack sensors from 

Denmark-based BLIP Systems measure and predict movements of people and vehicles 

(Blip). It allows decision makers in various situations, including airports, road traffic, 

train stations, ports, ski resorts, amusement parks and more, to reduce delays and queues, 

travel times, optimize resources and planning, and improve the traveler experience and 

retail. 
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3 HARDWARE, SOFTWARE, AND DATA ANALYTICS 

It is possible to estimate the proximity of pedestrians to the sensors when their devices 

are actively looking for other devices. Majority of commuters carry either a mobile phone 

or a smart device that is basically a handheld minicomputer with multiple means of data 

transmission such as Bluetooth and Wi-Fi.  A Bluetooth device can either operate in slave 

mode, meaning that the device is controlled by another device, or in master mode. 

Whenever a BT device is powered on, it may try to operate as one of the aforementioned 

modes. Once the master device and the slave device know each other’s addresses, two 

devices synchronize over the frequency hopping sequence, in other words, piconets. A 

piconet is a network of connected devices via Bluetooth technology. There can be as 

many as 8 active devices at once in a piconet; however, only one device can be a master. 

The Bluetooth protocol for establishing connections has a layered structure. These 

layers can be grouped into two main parts as a controller and a host stack. The controller 

stack is installed on the hardware. It contains the Bluetooth radio and a microprocessor. 

The host stack, on the other hand, is implemented as software and deals with high-level 

data. While the controller establishes the connection, the host stack controls the protocols 

for packet handling and modifies parameters for discoverability. During the connection, 

BT devices send message packets including their anonymous MAC IDs and Received 

Signal Strength Indicator (RSSI). MAC addresses are the most common unique 

identifiers in IEEE 802 network technologies. It consists of 6 bytes/48 bits which make it 

possible to generate 248 potential unique MAC addresses. The first three bytes contains 

an organizationally unique identifier (OUI), and the following three are assigned by the 

organization in any manner as long as it is unique. Figure 1 shows the structure of a MAC 

address. 
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Figure 1: MAC Address Architecture 

3.1 Hardware 

The hardware used for testing is an Android tablet manufactured by ASUS called Nexus 

7. It is a thin, light, portable and affordable 7
’’

 tablet that comes with Android 4.1. It has a 

1.2GHz CPU, 1GB memory, and 16GB storage, which are sufficient for collecting and 

processing Bluetooth data. The specifications of the device are given in detail in Table 2. 

It has a Li-polymer battery that can run up to 9.5 hours on its own and additional 6-7 

hours by hooking up external 10kmAh batteries.  

Table 2: Asus Nexus 7 Tablet Specifications 

Operating System Android 4.1 

Display 
7" WXGA (1280x800) Screen 

IPS Panel -  10 finger multi-touch support 

CPU NVIDIA® Tegra® 3 T30L Quad-Core @1.2Ghz 

Memory 1GB 

Storage 16GB*1 

Wireless Data Network WLAN 802.11 b/g/n@2.4GHz - Bluetooth 

Camera 1.2 MP Front Camera 

Interface 
2-in-1 Audio Jack (head-out/MIC), 1x Docking PIN 

1x micro-USB, 2x Digital microphone,2x High Quality Speakers, 

Sensor 
G-Sensor, Light Sensor, Gyroscope, 

E-compass, GPS, NFC, Hall Sensor 

Battery 
9.5 hours, 4325mAh,*2 

16Wh Li-polymer 

Dimensions 198.5 x 120 x 10.45 mm 

Weight 340 g 
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A sample Asus Nexus 7 tablet and its physical features can be seen from Figure 2 below. 

It comes with a micro USB cable and a charging unit in a box. The device has double 

speakers, a micro-USB connector, 3.5 mm headphone jack, 2 microphones and a 4-pin 

connector. Although, it takes about 35 seconds to boot, applications load rapidly and 

respond briskly. 

 

Figure 2: Physical Features of the Tablet 

3.2 Software 

The research team developed an application (app) called “Traffic Tracker” working on 

any Android device to detect BT devices. Traffic tracker scans the discoverable 

Bluetooth devices nearby and monitors messages in a way that their unique identifiers 

and signal strength information can be extracted and saved in tables as well as the 

detection times.  Figure 3 shows the main screen when the app is initiated. 
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Figure 3: Android App Interface 

Scan: This function allows users to start a 

new scan. The user has to name the new scan 

such as “Floor 2”. The scan name does not 

have to be unique and duplicate names can be 

differentiated by the timestamp of a scan. It is 

possible to get location updates providing 

GPS locations of a device when there is an 

internet connection. 

Database: After the scan is stopped, the app 

automatically creates a final table under the 

“Database” section. It shows the total number 

of records, scan name, duration, and 

occurrences of the same devices. These tables 

are saved in a relational database and can be 

imported to a text file. 

Files: This function allows users to view 

imported text files. The log file of the app is 

also stored under the “Files” section. 

During a scan, users can press the “Refresh” button to view the last 10 detected 

devices. Figure 4 shows the sample screen when users clicked on the “Refresh” button.  

 

Figure 4: Traffic Tracker Scan Screen 
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3.3 Anonymization 

The MAC addresses of the detected devices consist of a unique identifier that can be tied 

to individuals. Therefore, this information has to be encrypted in a way such that it 

cannot be decrypted. The encryption method can be chosen at the beginning of the scan 

depending on the purpose of the study. There are two main anonymization techniques 

used in the app: 

 Encryption (for counting studies) 

 Aggregation (for OD and average wait time calculation studies) 

In the encryption method, the MAC id is cut in half and the first seven digits of it are 

deleted. Then, the part containing the lasts five digits is encrypted using a key that is 

updated every 24 hours automatically in the app. To test the algorithm, the research team 

collected 8803 MAC addresses using the device and then analyzed the uniqueness of the 

ids using the last 6, 5 and 4 digits of the MAC address. The results can be seen in the 

table below. 

Table 3: The Accuracy of Detections using the Last N Digits 

# of Digits Used # of actual Detections  # of Detections using N digits Accuracy 

6 8803 8802 99.98% 

5 8803 8762 99.53% 

4 8803 8252 93.74% 

Since there are no major differences between using the last 6 digits and 5 digits in 

terms of accuracy, the research team decided to use the last 5 digits of the MAC address 

to make it even more challenging to retrieve the original address of the device. The last 5 

digits of the address are then encrypted with the key generated every day before storing 

the data on the sensors. The encryption key is first randomly generated on a remote 

server. After the initial key is generated, it is then encrypted again before uploading to the 

devices on site. 

In the aggregation method, only matching unique addresses between devices are 

stored in the dataset. These matching addresses are then replaced with a unique identifier 

that is derived from the order and the timestamp of the arrival. The original address is 

immediately then deleted. As mentioned previously, for the actual deployment, even 
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these anonymized data points will be deleted once OF flows and wait times for a 

predetermined time period is calculated.  

3.4 Data Access and Remote Self-Diagnostics 

Prior to deployment, a cloud-based server structure was implemented to enable 

tracking and accessing the data in real time, to observe the data collection, and also 

perform self-diagnostics. There are many cloud-based file storage services available such 

as Dropbox, Google Drive, Microsoft Skydrive, etc. These services were investigated for 

suitability and security prior to the application development. The research team 

implemented a cloud-based server that connects to all active devices and ensures data 

transfer between the device and the server. Then, these files can be accessible from any 

computer connected to the Internet to track the devices. An industry standard encryption 

method was integrated into the software app developed by the research team to guarantee 

maximum level of privacy.  

One important question about the lack of internet access in most of the pedestrian 

facilities such as subway stations can be addressed by using one of the two approaches 

proposed by the research team: 1) for the filed study, choose stations with Wi-Fi and or 

internet access 2) for stations without internet and /or Wi-Fi access, use some of the 

deployed dPEDBT2 devices as Wi-Fi hubs that are connected to one device with internet 

access that is deployed at an area of the subway station, most likely at a location close to 

the exit where there is internet connection.   

 

 

Figure 5: Depiction of the Web-based Self-Diagnosis and Data Access Application   
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Moreover, a series of simple yet useful self-diagnostics web-enabled functions 

such as the current reporting status of each device, power levels of battery powered 

devices, and possible data errors.  The developed web page can be seen in in Figure 5. It 

enables authorized users to access the collected data and sensors. This is one of the most 

important improvements of the current set-up since the team will be able to identify any 

hardware and software related problems in near real-time. This allows a prompt treatment 

of the issues that may arise. This software-oriented task can be done in coordination with 

the equipment testing to ensure that the data is captured adequately. 
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4 EQUIPMENT AND SOFTWARE TESTING 

Table 4: Conducted Tests  

Study Length 
Data 

Points 

Data 

Collection 

Locations 

Power Usage Coverage 

Student  

Center 

4 hours (over 

2 days) 
161 3 locations 2 hours 

Passing pedestrians at 3 

Exit/ Entrance of the 

building (additional 

details below) 

Roadside  

(US 27) 
2 hours 85 1 location 2 hours Vehicles + Pedestrians 

Roadside  

(I-287) 
1 hours 39 1 location 2 hours Vehicles 

Brooklyn I 5 days 7792 3 locations 

5 days  

(2 devices),  

6 hours  

(1 device) 

Pedestrians in a subway 

station 

 

Brooklyn II 1 days 2159 2 locations 1 day, 7 hours 
Pedestrians in a subway 

station 

Brooklyn III 5 days 9755 2 locations 
5 days, 38 

hours 

Pedestrians in a subway 

station 

Brooklyn Bus 1.5 hours 11 2 locations 1.5 hours Commuters inside a bus 

University 

Building 
4 days 104 4 locations 

50 hours, 45 

hours, 4 days, 

4 days 

4 floors of University 

building 

Brooklyn IV 7 days  3 locations Plugged in 

Pedestrians in an office 

environment 

(additional details below) 

Brooklyn  V 1 day  3 locations Plugged in 
Pedestrians in an office 

environment 

Student  

Center 
1 hour  3 locations 3 hours 

Passing pedestrians at 3 

Exit/ Entrance of the 

building 

Brooklyn VI 2 hours  4 locations 4 hours 

Pedestrians at 2 

Exit/Entrance and at 2 

different floors of the 

building 

 

Existing equipment is tested for various locations, situations, study lengths, and different 

purposes. Table 4 shows all the tests conducted. Developed BT detection and counting 

algorithms were improved and calibrated using the data generated from these field 

experiments. Fields tests with shorter durations were mostly conducted for calibration 

purposes. Longer tests provided more information about the data quality, battery life, and 

self-diagnostics. The most important field tests and their results will be explained in 

detail in the following sections. 
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4.1 Path Discovery of Pedestrians using Bluetooth Technology: Student 

Center  

4.1.1 Introduction 

For this study, three computers equipped with BT sensors were placed at the three exits 

of student center. Figure 6 shows the locations of Bluetooth receivers and attractions in 

the building. The studnet center experiences its busiest times during lunchtime. In 

addition, there is a bus stop in front of the center. Most students use the campus center, 

walk through the center, to reach the dorms or use the public transportation system on 

campus. 

 

Figure 6: Sketch of Student Center 

4.1.2 Test Objectives and Experimental Setup 

The research team conducted an additional test using a different Bluetooth device 

to understand the maximum detection range of a BT sensor. At the control points, BT 

sensors, which have a capability to detect mobile devices up to 100 meters, were used. It 

is investigated that whether more devices than 5% of the population can be captured with 
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a higher detection range capability. For the experimental set up, the devices are 

connected to a laptop at locations A, B and C in Figure 6.  

4.1.3 Summary of Results 

At two different days, three graduate students were positioned close to exits of the 

center. The study was conducted between 12:00 PM to 2:00 PM since the student center 

was the most crowded at this time frame due to lunch. On Day I of the study, total of 75 

Bluetooth devices were detected and on Day II, 86 devices were detected at the three 

locations. Table 5 shows the detected Bluetooth devices by day and by location with 

pedestrian counts. From the values in Table 5, the percentage of discoverable devices was 

found as 3.16%. 

Table 5: Detected Devices and Pedestrian Counts at Test Locations 

 

# of Detected Bluetooth Devices # of Pedestrians Counted 

A B C A B C 

Day I 22 33 20 690 672 914 

Day II 27 37 22 734 1022 1071 

 

The purpose of this test was to observe the pedestrian behavior and track their 

paths using Bluetooth receivers; hence, the counts alone did not provide useful 

information. The paths of the pedestrians were found by matching the MAC addresses of 

Bluetooth devices at three exits. Table 6 shows the number of the devices seen on more 

than one location. On Day I, 22 devices were detected at more than one location and on 

Day II, 27 devices are detected at multiple locations.   

Table 6: The Number of Detected Bluetooth Devices at Multiple Locations 

 

A-B A-C B-C A-B-C 

Day I 5 2 12 5 

Day II 9 1 10 7 

 

By matching the Bluetooth devices at multiple locations, the paths used by the 

pedestrian who was carrying the discovered Bluetooth device can be found. Moreover, 
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since the records also have timestamp, their activities while taking the path might be 

predicted to a degree. Figure 7 shows the paths of the pedestrians carrying Bluetooth 

devices, which are detected at all three locations on Day II. 

From the Bluetooth data, the durations of the paths and the time spent close to a 

control point was calculated. Table 6 shows the durations for the paths. In this table, the 

time spent close to a control point is shown as “X-X”. From the results, 

 Pedestrians, generally spend time close to point B. This is an expected result as 

the point B is located very close to food court, convenience store and ATMs. 

 Pedestrians leave the building from the same point where they enter. This result is 

also plausible as on-campus employees are going from their offices to the student 

center and then returning to their offices. 

 In general, pedestrians do not have complex paths. Only four pedestrians are 

observed to have 4 or 5 paths. 
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Figure 7: Paths of the Pedestrians Detected at All Locations on Day II 
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4.2 Pedestrians in an Office Environment (Brooklyn IV)  

The data obtained from this pilot test conducted is processed to obtain basic 

visualizations and summary statistics of various parameters. The presented analysis is 

focused on mainly three quantities travel time, wait time, and transition patterns. Both, 

travel time and wait time branch out from the derived quantity of elapsed time (eT) and 

can be directly inferred from the data. Transition patterns, on the other hand, can be 

inferred from the sensor location data.  Additional quantities may be obtained and will be 

briefly discussed. The data is processed at three aggregation levels all data, by sensor, 

and by unique BT ID. 

4.2.1 All Data  

Data from three different sensors, referred to as sensor 1 (blue), sensor 2 (green), and 

sensor 3 (red), is obtained. The data indicates 8161 total observations and 26 unique BT 

MAC addresses. Figure 8 shows the operation periods of each sensor; they are found to 

be somewhat consistent with the previously reported downtimes. However, there are 

unexplained gaps in the data particularly from sensors 1 and 2.  Note that data recorded 

by sensor 3 consistently spans hours throughout the whole day, whereas data from sensor 

2 is mainly obtained during the afternoon and night hours. The data recorded by sensor 1 

is inconsistent, yet limited and, therefore, conclusions cannot be drawn. The reasons for 

such patterns are yet to be explored. Consistent early morning BT ID detection can occur 

due to a stationary device for instance. Other detection methods such as IR or video may 

assist in verifying whether the BT detections are actual pedestrians.    
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Figure 8: Detections Received from All Three Sensors: Sensor 1 (blue), Sensor 2 

(green), and Sensor 3 (red) 

 

To gain a better understanding of the data, we initially attempt to obtain a holistic 

visualization taking into consideration all attributes, namely, date and time, unique BT 

ID, and sensor location as depicted in Figure 9.   
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Figure 9: Visualization of BT IDs at Sensor Locations over Time 

 

From this visualization, it can be seen that the sensors are functioning as intended for 

the most part, but an issue arises in that transitions between sensors can occur very 

rapidly, most likely attributable to the device being in detectable range of different 

sensors at the same time.  This makes simple tracking of devices more difficult, but 

rejecting transitions that occur within a certain timeframe, perhaps 30 seconds to a 

minute, could allow for a better overall picture of traffic patterns.  

4.2.2 Data by Sensor 

Considering the fact that less than 10% of the data is detected using BT, it becomes 

necessary to develop statistical models for better estimation of the desired physical 

quantity. For Instance, estimation of pedestrian arrival using Poisson process or 

parameters estimation for the pedestrian flow dynamical model. In this section, 

descriptive statistics for the elapsed time (eT) between subsequent events categorized by 

sensor are presented. Herein, we highlight the potential use of eT to infer various 
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parameters such as travel time and wait time. We propose the extraction of eT quantities 

based on a specific range since it may differentiate between multiple pedestrian actions, 

for example:  

 1hr<eT<24hr: may indicate time spent in a zone.  

 1min<eT<60min: may indicate travel time between nodes and/or time spent.  

 1sec<eT<60sec: may indicate wait time at a specific location.  

Table 7 presents the summary statistics for the eT between subsequent data points for 

each sensor.  On average, the elapsed time between 1hr and 24hr is approximately 4.8hr 

±4.5hr, where the elapsed time in the range of 1min and 60min is, on average, 3.05min 

±5.3min, and finally, the average elapsed time between 1sec and 60sec is 37.1sec 

±10.8sec. The large standard deviation with respect to the mean indicates that the time 

elapsed data follows an exponential distribution which gives rise to Poisson distributed 

pedestrian arrivals. The upper and lower limits need further investigation in order to 

accurately infer the desired pedestrian actions. In addition to time spent, travel time, and 

wait time, the rate of pedestrian arrival at each sensor, which may represent rate of arrival 

or exit of pedestrians with active BT devices at a building’s entrances. 

Table 7:  Summary Statistics for eT between Subsequent Data Points for each Sensor. 

 

4.2.3 Data by Unique BT ID 

There are 26 unique BT IDs present in the data from all three sensors, thirteen of which 

detected by sensor 1, eleven by sensor 2, and nine unique BT IDs detected by sensor 3. In 

this section, we attempt to extract tracking information for each unique BT ID and obtain 
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summary statistics regarding the elapsed time and the transitions between sensors. This 

analysis provides us with information pertaining to the behavior of the individual, as 

oppose to the rates of detection (occurrence of an event) obtained in the analysis of the 

previous section.  

The trajectories of every unique BT ID can be obtained. This can assist in exploring 

recurring patterns in individuals’ trajectories such as hourly, daily, and weekly habits, as 

well as commonly used entrances and exits. In the current data some patterns can be 

observed at BT IDs 9, 11, 17, 18, 19, 23, and 26. The rest of the detections are somewhat 

occasional.  It is also observed that transitions between sensors did not occur often. As 

Table 8 demonstrates, sensors 1 and 2 had only five IDs in common, whereas two IDs in 

common are found between sensor 2 and 3, and only 1 ID between sensors 1 and 2. 

Table 8: Intersection of Unique BT IDs Between Sensors. 

 

A summary statistics of the elapsed time for each unique BT ID was obtained. The 

number of total detections as well as the time between each data input is considered.  

These are divided into three time elapsed subintervals: between one second and one 

minute, between one minute and one hour, and between one hour and 24 hours.  This 

allows for extraction of false alarms, e.g. unrealistic quick transitions between sensors, in 

order to gain a better understanding of true traffic patterns.  However, further analysis can 

be done to allow for even better rejection of data. In addition to data cleaning, parameters 

such as time spent, travel time, and wait time can also be extracted as mentioned in the 

previous section. The weighted aggregation of the results is shown in Table 9. Note that 

the expected values of the elapsed time for the first and the second intervals are close in 

value to the standard deviation. Thus, Poisson distribution is appropriate to use in this 

case. Further investigation is needed for the limits, particularly for the third interval. 
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Table 9: The Weighted Aggregation of the Summary Statistics for the Elapsed Time. 

 

The elapsed time information for each unique ID is segregated based on the 

location transitions made by the pedestrian. Transitions between sensors are distinguished 

by the sensor location as well as the direction of movement giving rise to seven possible 

transitions 3 to 1, 3 to 2, 2 to 1, no transition, 1 to 2, 2 to 3, and 1 to 3. As expected, a 

Poisson process is apparent as demonstrated in Figure 10.  In this plot, the elapsed time 

that is less than 20 min is provided with respect to the transition performed. Transitions 

between sensors 1 and 2 outnumber other transitions in both directions. Taking a closer 

look by zooming onto the data to display transitions that took less than 1.5min, depicted 

in Figure 11, it shows that some transitions took less than 30sec (the detection rate). This 

phenomenon may occur due to measurement noise or large detection range of adjacent 

detectors. This calls for the requirement of performing data validation since a more 

accurate representation of traffic would likely be realized. 

 

Figure 10: Elapsed Time of Transitions between Sensors that are less than 20 

mins 



Real-time Estimation of Transit OD Patterns and Delays Using Low-Cost Ubiquitous 

Advanced Technologies 

32 

 

 

Figure 11: Elapsed Time of Transitions between Sensors that are less than 1.5 

mins 

 

4.3 Controlled Experiments  

As mentioned previously, case specific data filtering techniques are necessary. However, 

the preliminary data analysis performed on the above experiments consistently 

demonstrated two main issues with the collected data. The first issue is that unique BT 

IDs can be detected at more than one sensor simultaneously; the second issue is that some 

transitions’ durations are less than a few seconds, which may not be possible considering 

the distance between the sensors. Depicted in Figure 12, a sample trajectory of unique BT 

ID selected to demonstrate the issues stated above. The depicted sample trajectories show 

the time and location of detection for each BT ID. The RSSI levels are also displayed by 

the heat map colors, where the highest value (in the negative sense) corresponds to the 

deepest red indicating closeness and the lowest value corresponds to the darkest blue. 
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Figure 12: Trajectories of Two Unique BT IDs 

The above results motivated the research team to conduct the controlled experiments in 

order to verify the effectiveness of the data.  

4.3.1 Objectives 

The experiments were designed with the following objectives in mind: 

• To understand how RSSI values are related to various distance/speed/devices 

• To understand how to deal with a device that is detected by two or more sensors 

at the same time or within a very small amount of time that is less than the 

estimated transition time  

• To determine whether we are able to distinguish between the devices detected 

outside or inside the building and those that are detected at other floors 

Four sensors were used for the controlled experiments and plans were made to collect 

ground truth data in order to compare with sensor data. Two experiments were 

performed: path verification experiment and counting verification experiment.  

4.3.2 Experimental Setup and Results 

In this experiment, the goal is to verify how well we can identify trajectories made by 

users. Depicted in Figure 13 the plans for the path verification experiment. Three students 
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held BT active devices and walked the same path five times. Typical walking speed is 

approximately 3 miles/hour. The students used three different devices: Samsung tablet 

(Android), iPhone 6 (iOS), and windows phone.  

 

 

Figure 13: Path Verification Experiment Plan 

 

The results of the path verification experiment can be depicted in figures 14.a, 14.b, 

and 14.c for the Samsung tablet, iPhone 6, and Windows phone, respectively. The ground 

truth data, the green line, is plotted in conjunction with the sensor data, the blue line. 
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Figure 14.a: Samsung Tablet 

 

 

Figure 14.b: iPhone 6 
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Figure 14.c: Windows Phone 

Figure 14: Ground Truth Data (Green) vs. Sensor Data 

4.3.3 Conclusion 

The results demonstrate that there are some errors associated with the sensors accurately 

reporting the location of devices. This might be due to the detection range the sensors and 

their placemen. Additional studies must be conducted to quantify this error. It is noted 

that the range of the RSSI the sensors picked up are somewhat consistent for all three 

devices. For more indicative results, the subjects should have been walking together in 

order to guarantee that they have followed an identical path. Inaccuracy of time recording 

has also contributed to the errors. This reiterates the importance of the three main aspects: 

detection range, sensor placement, and filtering techniques.  
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4.4 The Subway Station Test  

4.4.1 Introduction 

The research team in collaboration with the transit authority conducted a pilot study at 

three different locations in a major subway station serving multiple subway lines. Figure 

15 shows the locations of the Bluetooth based pedestrian (PEDBT2) sensors inside the 

subway station. In spite of the challenges such as software problems encountered during 

the pilot test, the outcome was encouraging in terms of the quantity and detail of the 

collected data considering the investment needed for deployment.  We were able to 

demonstrate that large amounts of time-dependent count and origin destination data  and 

waiting times can be collected using a small number of devices.  

 

Figure 15: Locations of the Tablets in the Subway Station 

Table 10: Period of Data Collection by Device 

  
Duration 

Tablet 1 

(Platform II) 

Tablet 2 

(Mixing Bowl) 

Tablet 3 

(Platform I) 

Test #1 7/30-8/3 7/30 10AM - 8/3 9AM 7/30 10AM - 7/30 4PM 7/30 10AM - 8/3 10AM 

Test #2 8/13-8/14 - 8/13 11AM - 8/14 11AM 8/13 11AM - 8/13 6PM 

Test #3 8/14-8/18 - 8/14 11AM - 8/18 6PM 8/14 11AM - 8/16 1AM 
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As seen in Table 10, the length of periods during each test period is different. 

Moreover, there were a number of problems with the app that we have identified during 

the pilot test.  The most important one was the quitting of the app unexpectedly.  This 

was mainly observed for tablet 1.  Since we did not have an online connection to the 

devices, we were not able to detect these problems in real-time.  The other problem was 

the management of device memory and power since the incoming data can be quite large. 

4.4.2 Test Objectives and Parameters 

The primary objectives of the study are:  

1. Conducting a test to observe the effectiveness of the BT sensing app running in 

tablets for tracking foot traffic, and  

2. Feasibility of capturing the before/after travel pattern changes due to the  closure 

of an alternative segment necessitating a transfer at the test station. 

In the test, we focused on the counts from the tablets to observe the foot traffic at the 

selected locations. Moreover, the average wait-times are also of main interest as they 

might indicate the wait-time of commuters for the trains at the station. Another useful 

indicator is the counts of movement between sensors which can be used to identify some 

travel patterns of riders as well as approximate OD demands. However, due to the 

problems with the tablets, it was not possible to collect data continuously and thus 

conduct a reliable before and after study. Thus, the research team focused on objective 1.  

4.4.3 Summary of Results 

Table 11 presents a summary of the data collected for three test periods. Due to 

difference in the length of testing periods, it is useful to focus on average values. 

Table 11: Total Number of Detected Devices and Average Waiting Times  

  # of records by device Average wait (min) 

  Tablet 1 Tablet 2 Tablet 3 Tablet 1 Tablet 2 Tablet 3 

Test #1 2762 392 4638 1.34 1.13 2.7 

Test #2 

 

1221 938 
 

1.36 2.33 

Test #3 

 

5133 4622 
 

1.79 3.02 
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Some of the important observations based on the limited data we were able to collect 

during the pilot test are as follows. 

1. A relatively large number of BT enabled devices were detected by all three 

tablets.  The reason for varying number of samples shown in Table 11 are due to the time 

the app worked properly without failing, not due the change in percentages of devices 

that could be detected. 

2. Average waiting times at the platform (Tablet 3) increase from 2.7 minutes to 

3.02 minutes after August 14th.  A slight increase in waiting times at the mixing bowl 

(Tablet 2) after August 14th is also observed.  

3. We saw an increase in movement percentages at Platform II (Tablet 3) after 

August 14th. 

4. Due to software problems with tablet 1, data from the tablet is not available for 

Test 2 and Test 3.  

Table 12 shows the daily average counts and waiting times for Tablet 3. Note that, the 

weekend counts (8/16 and 8/17) are excluded from averaging for Test #2 since the data 

was collected during weekdays in Test #1 and Test #3. From Table 12, it can be observed 

that after the closure of Montague Tunnel, the number of people waiting in proximity of 

Tablet 3 (Platform II) and their waiting times increased. 

Table 12: Daily Average Counts and Waiting Times for Tablet 3 

 

12AM-6AM 6AM-10AM 10AM-4PM 4PM-7PM 7PM-12AM 

  Cnt Wait Cnt Wait Cnt Wait Cnt Wait Cnt Wait 

Test #1 36 1.32 174 1.95 364 2.86 202 1.52 135 2.4 

Test #2 

    

477 2.93 314 1.26 

  Test #3 52 3.95 616 1.86 626 3.44 449 2.72 333 3.84 

 

Table 13 presents the counts of movement between tables for each testing period. 
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Table 13: The Number of Matches between Tablets per Testing Period 

  1-1 1-2 1-3 2-1 2-2 2-3 3-1 3-2 3-3 

Test #1 2628 2 132 144 45 321 598 30 4010 

Test #2 

    

316 433 

 

53 885 

Test #3         776 1810   161 4461 

 

4.4.4 Individual Results for each Testing Period 

Test #1 

1) Counts and Average Wait Times 

Table 14 shows the daily counts and average wait times for peak and off-peak periods for 

each tablet. During the first test, Tablet 3 is the one that detected the most BT devices 

almost every period of each day in the study. Average wait times for Tablet 3 are higher 

than the average waiting times recorded by other devices. 

Table 14: Daily Counts and Average Wait Times for Peak and Off-peak Periods 

 

12AM-6AM 6AM-10AM 10AM-4PM 4PM-7PM 7PM-12AM 

  Cnt Wait Cnt Wait Cnt Wait Cnt Wait Cnt Wait 

30-Jul 

          Tablet 1 

    

323 1.44 

    Tablet 2 

    

370 1.86 165 0.79 125 1.18 

Tablet 3         767 2.62 501 1.35 283 1.63 

31-Jul 

          Tablet 1 54 1.94 408 1.22 211 1.53 105 0.73 81 0.39 

Tablet 3 72 1.36 235 2.18 235 3.36 115 1.14 89 3.12 

1-Aug 

          Tablet 1 23 1.41 179 0.72 91 1.17 26 1.56 19 1.3 

Tablet 3 27 1.49 163 2.43 216 2.67 104 1.83 69 3.41 

2-Aug 

          Tablet 1 7 0.62 65 2.39 103 1.62 34 1.22 25 0.96 

Tablet 3 21 2.51 124 2.11 239 3.26 89 2.61 99 3.24 

3-Aug 

          Tablet 1 17 2.93 39 1.89 

      Tablet 3 24 5.3 77 1.94             
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Figure 16: Hourly Counts from each Device during Test #1 

Figure 16 shows the hourly counts from each device during test #1. It can be seen 

that Tablet 2 stopped working on July 30
th

 and did not record any activity after 

approximately 4 PM. However, the other two devices kept working and recording BT 

detections properly. It can be interpreted that the locations of Tablet 3 and Tablet 2 are 

experiencing the busiest times around morning and evening peak hours. The results 

showed that this station is heavily used by commuters and it has almost no traffic around 

midnight. 
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Figure 17: Hourly Average Wait-times from each Device during Test #1 

Although the station’s busiest periods are morning and evening peak hours, users 

experience the most waiting times during midday and midnight. This can be explained by 

frequent train schedules for morning and evening peak hours. We can assume that the 

train service during midday and midnight time periods is infrequent resulting in longer 

average wait-times.  

2) Movement between Tablets 

Table 15 exhibits the movement codes between tablets. Some users were detected 

only by a single sensor. In that case, repeated tablet number represents the movement 

code. For example, 1-1 corresponds to a user who is detected only by Tablet 1. In other 

cases, the first number represents the initial detection and the second number represents 

the movement direction of a user. 

Table 15: The Movement Codes between Tablets 

Movement Code Explanation 

1-1 Detected only by Tablet 1 (Platform I) 

1-2 Movement from Tablet 1 to Tablet 2 

1-3 Movement from Tablet 1 to Tablet 3 

2-1 Movement from Tablet 2 to Tablet 1 

2-2 Detected only by Tablet 2 (Mixing Ball) 

2-3 Movement from Tablet 2 to Tablet 3 
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3-1 Movement from Tablet 3 to Tablet 1 

3-2 Movement from Tablet 3 to Tablet 2 

3-3 Detected only by Tablet 3 (Platform II) 

 

Figure 18, Figure 19 and Figure 20 show the hourly movement counts from Tablet 1, 

2 and 3 respectively. It should be noted that Tablet 2 stopped working after 4 PM. 

Therefore, its plot looks different than the other plots showing a shorter period of time. 

Figure 18 shows that the movements from Tablet 1 to Tablet 3 constituting 

approximately 10%. On the other hand, about 20% of the users moved from Tablet 3 to 

Tablet 1 which can be seen in Figure 12. This indicates that more people moved from the 

location of Tablet 3 to Tablet 2 since Tablet 3 detected more users than any other tablets 

in the study. 

 

Figure 18: Hourly Movement Counts - Tablet 1 vs. Others during Test #1 
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Figure 19: Hourly Movement Counts - Tablet 2 vs. Tablets during Test #1 

 

 

Figure 20: Hourly Movement Counts - Tablet 3 vs. Others during Test #1 
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5 PEDESTRIAN MOBILITY PREDICTION MODEL 

5.1 Introduction  

Traditionally, various versions of linear and nonlinear filters have been proposed for the 

dynamic OD matrix estimation problem for vehicles where flow data is obtained from 

classical flow detectors. Van Lint et al. and Treiber et al. discuss a variety of nonlinear 

filters (Lint 2009 & Treiber 2011). A refined version of the Kalman Filter (Kalman 

1960), is proposed in Barcelo et al. 2010. Chang et al. 1995 proposed using time 

dependent traffic data along with traffic flow models to estimate travel times dynamically 

for every OD pair using an Extended Kalman Filter to treat nonlinearities. Lin et al. 2007 

extended the work proposed by Change to include traffic dynamics and travel time data. 

Hu et al. 2001 also uses an Extended Kalman Filtering algorithm to estimate dynamic OD 

matrices. In recent years, as BT data became more common, researchers adapted previous 

approaches to fuse the new data with the classical flow data in order to solve the 

estimation problem.  Barcelo et al. 2012 proposed a recursive linear Kalman-Filter for 

state variable estimation that combines and modifies the earlier work of Chang and Wu 

1995}, Hu et al. 2001, Choi et al. 2009, and Van Der Zijpp & Hamerslag 1994, adapting 

their models to take advantage of travel times and traffic counts collected by tracking BT 

equipped vehicles and conventional detection technologies. They proposed a linear 

formulation of the Kalman Filtering approach that uses deviations of OD path flows as 

state variables, as suggested by Ashok 2000, and calculated with respect to Historic OD 

path flows for detected vehicles without using an assignment matrix. 

5.1.1 Crowd Modeling and our Approach 

A wide range of models have been employed to describe the distribution of crowds, such 

as, dynamic cellular automaton model, lattice gas models, social force models, fluid-

dynamic models, agent-based models, and game theoretic models (Alizadeh 2011 & Guo 

2008).  Some of these models capture the microscopic behavior and other capture the 

macroscopic behavior of crowd dynamics. Even though this study is concerned with 

pedestrian networks, we first define the network as a general graph, as demonstrated in 

Figure 21, in order to take advantage of existing graph theoretic properties and develop 

additional ones based on the unique data sets BT detectors provide. This allows us to 
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capture the topological attributes of the infrastructure as well as the flow dynamics 

(Xiaoping 2009). This also provides a flexible framework where the flow on each edge of 

the graph can potentially be governed by the desired dynamics using various pedestrian 

crowd dynamic models such as fluid-dynamics for macroscopic behavior, or lattice gas 

models for macroscopic behavior. 

Defining the network as a graph lays the ground for the development of a Markov Chain 

Model (MCM) to capture the general attributes of a pedestrian network such as density, 

dwell times, and OD flows. Markov Chains provide a mathematical structure appropriate 

to modeling discrete events, which we find to be suitable in our case study or our 

understanding of pedestrian behavior. Pedestrian networks can be conceptualized as a 

general graph. A given structure of interest, such as a residential building, a shopping 

mall, an airport terminal, or a transit station, can be represented as a network by defining 

a couple G(I, J) where I is a finite collection of N edges and J is a finite collection of M 

vertices that include all entrances and exits of the space of interest.  

In this section, we demonstrate a possible modeling scheme using the data obtained from 

the Brooklyn IV case study. We then draw conclusions on how this model can be 

improved in order for it to be used for prediction.  

5.2 Brooklyn IV Case Study  

In the Brooklyn IV case study, three sensors with BT detection capabilities were 

placed in a building floor with two main entrances. The MC model for this scenario is 

given in Figure 21. A sensor was placed at each entrance; therefore, for this case study, 

we have three transient states representing the local areas surrounding each of the three 

sensors s1, s2, ands3 and one absorbing state “s4” representing areas near the 

entrance/exit locations.  
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Figure 21: Markov Chain Model for the Brooklyn IV Case Study 

5.2.1 Data-based MCM  

Twenty-six unique BT devices were recorded during the case study. The data includes 

several attributes, namely, signal strength, timestamp and encrypted device IDs. This data 

is initially processed to estimate the transition matrix. This part involves two main 

processes: obtaining the flow matrix and maximum likelihood estimation.  

The data was segregated by unique IDs where for each a list of time-stamps and 

corresponding states were provided. For each unique ID, the data was then segregated by 

day where the transitions at each time step for every unique ID were obtained. In general 

terms, let F be the M × M flow matrix where the entry fij is the count of occurrences 

during which a person transitioned to j from i. In this case study, the flow matrix from the 

data for the proposed model of the given network was found to be:  
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Maximum Likelihood Estimation (MLE) is then used in order to estimate the 

transition matrix T from the flow matrix Fw. In general, each entry of T, aij is estimated 

as follows:   

  (1) 

This indicates the likelihood of a single step transitioning from state i to state j. In this 

case study, the transition matrix for the proposed model of the given network using the 

data was found to be:  

  

5.2.2 Analysis and Results 

Obtaining the transition matrix allows us to compute other important quantities, i.e. 

convergence, time to absorption, and state density distribution, which provide an insight 

to key pedestrians’ behavioral properties.  

The n-step transition matrix, T
n
, clearly shows that the transition probability, as n 

becomes large, to any state other than the absorbing state will eventually become zero; 

whereas, the transition probability to the absorbing state from any state will eventually 

converge to one. As depicted in Figure 22, it takes 22 steps or less for a person to leave 

the test site in the case study under discussion.     
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Figure 22: Convergence of the n-step transition matrix as n → ∞ 

Time to absorption is given by, ti, the expected number of steps needed before the 

process is absorbed when starting from the ith state.  The times to absorption for all three 

nonabsorbent states in our case study were found to be: 

  

We will now use the estimated MCM in order to predict the density distribution 

within the various states. In practical situations, this can also be used as demand 

prediction for resource allocation. Firstly, the initial density distribution, μ0, was obtained 

from the data for each state where each entry provides the probability of being in a state 

at initial time n = 0. In addition, d, the total number of pedestrians entering the building, 

and di, the number of pedestrians entering the building at time step i, were also obtained 

from the data. Then, we can show that the density distribution of pedestrians at the nth 

time step at each state is given by:  
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  (2) 

Figure 23 illustrates how the relative density is distributed among the three tested 

locations in the aforementioned case study. 

 

Figure 23: The Density Distribution for all three Locations 

 

We are continuing with our efforts to further develop and validate the proposed model. 

Future work must encompass two fronts. The first is to develop a data collection plan that 

includes ground-truth data to be able to validate the predictive model and the second is to 

enhance the quality of the data by fusing it with data collected from other detection 

methods, for example infrared counts or vision. 
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6 CONCLUSIONS 

Human movement behavior research has recently received increased attention 

particularly in the field of transportation planning and engineering. The traditional 

methods for pedestrian mobility monitoring include surveys, fixed pedestrian counters, 

and vision-based technologies. With the increase of smart devices, research has started 

focusing on tracking mobile phones to estimate pedestrian movements. The research team 

showed that if the detection system is equipped with Bluetooth receivers, it is possible to 

capture Origin-Destination (OD), travel time, wait time and flow information for some 

subset of the pedestrians with visible Bluetooth devices. 

There are of course limitations of these procedures that deserve mention. Short 

living network addresses, non-mobile devices that transmit intermittent probe requests 

and devices that are detectable at a low frequency can reduce the accuracy of the sensors. 

However, robust algorithms can be developed to alleviate the inaccuracies originated 

from the outliers that are inherent in the collected wireless traces. Such algorithms can 

aim to remove low-quality detections, eliminate periodic/cyclic behavior, and improve 

detection and counting performance of devices. 

The initial filtering and analysis of the data showed that it is probable to capture 

re-occurring patterns of the passengers in the terminal. The peak periods and busiest 

hours can also be detected at sensor locations. This information makes it easier to 

estimate passenger demand at a transit terminal. However, the initial results only 

represent the number of detected devices and should not be used as actual pedestrian 

counts. If the location and time specific penetration rate of Bluetooth devices is known 

for the study sites, the device counts can be used to estimate total pedestrian counts. In 

conclusion, we suggest that the wireless data should be used with great care and well-

tested filters have to be used to clean the collected data.   

The encryption technique used in the data collection for this research not also 

provides an extra layer of protection for sensitive information but also preserves the 

identifiers unique for approximately 96% of the cases. The proposed MC model has 

demonstrated to be a promising approach in describing pedestrian networks that generally 
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lack structure and consistency. The measures obtained, such as convergence, time to 

absorption, and state density distribution, can be further developed to provide us with 

better understanding of pedestrians behavioral patterns and estimating key states of the 

pedestrian network, such as density, dwell times, and OD flows. As a future study, the 

BT sensors will be developed using micro-computers such as Raspberry PI on open 

source operating systems and application platforms such as UNIX and Python. This will 

not only provide more robust environment to enhance data collection and filtering 

processes but also the opportunity to integrate various sensor technologies together. 
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